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We study a two-state symmetric noise, with a given waiting time distributian, and focus our attention
on the connection between the four-time and two-time correlation functions. The transitigm) dfom the
exponential to the nonexponential condition yields the breakdown of the usual factorization condition of
high-order correlation functions, as well as the birth of aging effects. We discuss the subtle connections
between these two properties and establish the condition that the Liouville-like approach has to satisfy in order
to produce a correct description of the resulting diffusion process.

DOI: 10.1103/PhysRevE.70.046118 PACS nunm$)er02.50.Ey, 05.26-y, 05.40.Fb, 05.76-a

I. INTRODUCTION order correlation functions. Furthermore, because the noise is

symmetric, we only need to focus on even-time correlation

. Dichotomous noise is one of 'Fhe fund_amental representaf- nctions. Notice that we shall adopt the following conven-
tions of stochastic processes. It is used in random walks andb e  discussion of the correlation function

quantum two-state systems, as well as other mathematic

models of physical and biological processes. This represeri(_t}?é;(tf)g(t3)'ug(t“» implies the time orderind, <t;<ts
<t,.

tation is used because it is simple enough to obtain analytic’ . . .

solutions to dynamical equationg, yet ricr? enough to modeyl a According to Ref. [:.L3]’ .for Gaussian noise the fourth-
variety of complex physical and biological phenomena. Theorde'r correlayon fpnctlon is rellated to the.se.cond-order cor-
history of such two-state stochastic processes dates baéﬁlat'on function via the following expression:
more than a century to Markov representations of random

telegraphic signals and yet such noise still finds applicatiodé(t1)é(t2) &(ts) €(ta)) = (&(ty) £(t2))(E(te) £(t)) + (E(t) E(ts))

in models of contemporary complex phenomena. A few re- X{E() E(ty)) + (E(ty) Et) MEt) Elts)).
cent examples of complex phenomena modeled by dichoto- 5
mous stochastic processes are disorder-induced spatial pat- 2

terns[1], first-passag¢2] and thermally activated escaf#] ) ) )

processes, hypersensitive transpdit rocking rachetd5], 'I_'he higher-order correlatlon_ functlon_s are analogous_ly_ de-

intermittent fluorescencé6], stochastic resonanci/—d, fmed_. In the case where all times are identical, the definition

quantum multifractality[10], and blinking quantum dots (2) yields

[11,12. These and many other applications study the physi-

cal effects of dichotomous fluctuations, either Poisson or (&%= (2n- A", 3)

non-Poisson, without addressing, however, the consequences

that relaxing the Poisson assumption might have on the higrg property ensuring that the distribution éfis a Gaussian

order correlation functions. function. By the same token, it seems natural to factor the
In this paper we are interested in the high-order correlafourth-order correlation function for the dichotomous sym-

tion properties of the dichotomous noi&g)—that is, a sym-  metric noise as

metrical two-state statistical process with the valu&ég and

-W. Usually, for the purpose of making statistical calcula- (E(ty &(ty) E(ta) E(ts)) = (&(ty) E(ty) X E(ta) E(ta)), (4)

tions we focus on stationary noise and use the stationary

correlation function with analogous prescriptions for the higher-order correlation

functions. In the case of equal times, the definitidi re-
%, (1)  duces to

where the brackets denote an average over an ensemble of (&M =(&", %)
realizations of the dichotomous noise. It is worth illustrating

the difference between this dichotomous noise and a Gaussgich is similar, but not identical, to Eg¢3). Equation(5) is

ian noise with the same two-point correlation function. Theimplied for the moments of a stochastic process with the
difference between the two processes resides in the higlequilibrium distribution function

Dyt ty]) =

1539-3755/2004/1@)/0461189)/$22.50 70046118-1 ©2004 The American Physical Society
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1 established that the exact solution of the GDE does not lead
p(&) = 5[5@‘ W) +8(&+W)]. (6)  to the process of Lévy diffusion, a result previously obtained
using stochastic trajectories, thereby suggesting a possible
Hereafter, we refer to propertd) and the factorization of conflict between the adoption of stochastic trajectories obey-
the corresponding higher-order correlation equations as ding renewal theory in the continuous time random walk
chotomic factorizatior(DF). It seems evident that the ratio- (CTRW) formalism and the adoption of a Liouville-like ap-
nale for the DF property is given by the fact that it yields theproach to the dynamicg0]. The DF assumption is not ex-
distribution of Eq.(6). In general, the reverse might not be plictly made by Céceregl5]. However, the analysis of Bo-
true. The adoption of a dichotomous noise, fitting E8), lognaet al. indicates that the theory of Cacerd®] implies
might not yield the DF property. In this paper, with the help the DF property. Others have also assumed non-Poisson sta-
of numerical simulation, we shall prove that in the non-tistics, while still retaining the DF propert21].
Poisson case it does not. We establish herein that the DF condition breaks down as
The vast majority of papers dealing with dichotomousa consequence of the non-Poisson condition. Furthermore,
noise assume the statistics of the two states to be Poissowe show that violation of the DF condition emerges from
that is, the length of time the system remains in a given stat@on-Poisson statistics in the same way as do aging proper-
has an exponential distribution. It is important to remark thaties. These results have the desirable effect of establishing
the simplest physical phenomenon modeled by the stochastihe limits of validity of the elegant GDE, leaving aside for
variableg(t) is diffusion. This means that all the properties of the present the analysis of the issue as to whether the density
the phenomenon can be determined by the solution to thand Liouville-like formalism are compatible with the emer-
stochastic equation gence of these properties.

dx

P ). (7) Il. FOUR-TIME CORRELATION FUNCTION

Allegrini et al. [14] found that the evolution of the probabil- N this section we show that in the non-Poisson case, the
four-time correlation function of the dichotomous noise de-

ity density, corresponding to the dichotomous Langevin o )
equation(7), is given by the generalized diffusion equation parts from the DF prescription. It hgs_ to be pomted out that
(GDE) our arguments are based on examining a single sequgnce

and thus on time averages, rather than on ensemble averages.
pxt) 5 td ' , (9_2 , 8 We assume that the theoretical sequence is built up by cre-
Ta =(&) . Udy(t-t )axzp(X,t ). ®) ating a sequenc;} of real positive numbers using the prob-
ability density
where the two-point correlation function under the integral is
arbitrary. —(,
It is interesting to note that the same GDE emerges from W) = 1)(q-+ T~
the analysis of Cacerefl5], who studied the Langevin
equation

)

(10

The choice of this analytical form is determined by simplic-
ity, in which we obtain in the time asymptotic limit an in-
dx verse power law with index, while satisfying the normal-
at (O + (), (9 izationpcondition . ying
with &(t) being a dichotomous noise anda friction param- * _
eter of arbitrary intensity. This same equation was studied in 0 Hndr=1. (1)
an earlier paper by Annunziatet al. [16]. It is evident that
with y=0, Eq.(9) becomes equivalent to E¢7). The equa- The parametef >0 ensures the normalization condition, re-
tion for densities found by Céacer¢s5] is identical to that quired by the fact thai)(7) is a probability density and is
found by Annunziatcet al. and both results foy— 0 reduce related to the average time interval generated by the density.
to Eq.(8). These results are valid independently of the formTo generate a realization of the time series we split the time
of the correlation functionP,(t). The fact that the GDE is axis into many time intervals of lengths determined by the
obtained using these different approaches is significant, sincget of numbergz}. The first interval begins at time=0 and
the work by Caceres rests on van Kampen’s lenfii¥daand ends att=7;, the second begins dt=r and ends att
the Bourret-Frisch-Pouquet theorgih8], while the theory =+, the third begins at=r+7, and ends at=7,+m,
adopted by Annunziatet al. is the same as that used by +7;, and so on. We refer to this sequence of time intervals,
Allegrini et al. [14], the Zwanzig's projection method9].  which is not observable, as the theoretical sequence. The
In any event, both approaches adopt a Liouville-like perspecdichotomic sequence under study in this paper, which can be
tive. observed, is created as follows. At the beginning of any time
Bolognaet al.[20] established that the GDE produces theinterval we toss a coin and fill the interval with either the
same higher-ordex moments as those derived from the in- valueW or the value W, according to whether we get a head
tegration of the diffusion equation, supplemented with theor a tail. Thus, if we move along the observable sequence,
assumption that the correlation functions of the dichotomousve meet large time portions of the sequence, within which
variable &(t) fit the prescription of DF. Bolognat al. also  the sequence retains the same value, eitheor -W. We

046118-2



NON-POISSON DICHOTOMOUS NOISE: HIGHER- PHYSICAL REVIEW E 70, 046118(2004)

refer to these time intervals with the same valueéofs along the entirginfinite) theoretical sequence of laminar re-

experimentalaminar regions and to the corresponding dis-gions and count how many window positions are compatible
tributions of time lengths ag,(7). The adoption of the with the window being located within a theoretical laminar
suggestive ternexperimentakeflects the fact that this pro- region, which must have a length larger than the window
cedure is the same as the one we would adopt when makingze. In addition we have to count the total number of win-
a real experimental observation. A relevant example is thejow positions. In other words, the stationary correlation
phenomenon of blinking quantum ddts2], which has been  fynction of &(t) is nothing but the probability that the two

an intermittent light signal, which can be identified with the
sequences(t) here under study, wittW and W meaning
light on and light off, respectively.

We point out thatye,,(7) does not necessarily coincide
with (7). According to Ref[24] the theoretical waiting time
distribution #(t) is connected to the experimental waiting
time distribution by the Laplace transform relation

of a given sign to the correlation function would produce,
with equal probability, a contribution with opposite sign,
thereby providing a vanishing contribution. An attractive
way to explain this procedure is through the concept of ran-
dom events. First of all, the lengths of the laminar regions
are determined by the random drawing of the numbers
with distribution (7). At the border between one laminar
region and the next we toss a coin to decide the sign of the
- ) next laminar region. This coin tossing is a random event and
1+ YexplU) no random event can occur between two times located in the
same laminar region. If the two times are located in different
laminar regions, one or more random events must have oc-
curred between them. Thus the correlation functibgt,
—t;) can also be interpreted as the probability that no random
event occurs between timésandt,.

We evaluate the four-time correlation function, using the
same arguments. Consider four times, ordered as
; i ) . ; . 1, <t,<tz<t,. The corresponding correlation function exists
realize a condition compatible with the existence of a stationy, jer the following conditions. The first condition is that all
ary correlation functlpn fOE(D). . _ four times be located in the same laminar region. The second

Du_e to the_theoretlcal prescription that we adopt to real'z%ondition is compatible with the paifs,, t,) and (ts,t,) be-
the dichotomic sequence under study, a given expenmentzﬁllg located in distinct laminar regions. This means that the

Iammadr reg|on—knamel)r/], a time |_nterval_v¥]here, as ea(;“ertimestl andt, belong to a laminar region, denoted By,
pointed out(t) keeps the same sign—might correspond 0y, timest, andt, belong to a laminar region denoted by

an.arbitrarily_ large pumber of theoret_ical time intervqls, to-|—3 , and T, ,#Ts, Using the random event concept, the
which the coin tossing procedure assigns the same sign. Weycond condition implies that no random event occurs be-
sha!l refer to these theoretl'cal time mteryals as .theoretlc'at{,veent1 and t,, or betweent, andt,, while at least one
Iar_nmar regions or, more simply, as Iam|_nar regions. It iS;gndom event occurs betweenandts.

evident that the beginning of a laminar region corres_ponds_ 10 \We use the notatiop(ij) to denote the probability that

the occurrence of a random event—namely, the coin tossmgndtj belong to the same laminar region. Thus the prescrip-

that dete_rmines its sign. The Iam_inar regions are not obser\ﬁOn for the correlation function given by Eq13) can be
able, while the experimental laminar regions are observableexpressed as the probability function

by definition, and begin and end with a random event. We
cannot establish if other random events occur or not, and Dty —t) =p(12). (14)
how many, between the beginning and the end of an exper'vve also use the notation
mental laminar region.

The theoretical approach that we adopt in this section p(i) =1 -p(ij) (15)
rests on the same time average procedure as that adopted by o .
Geiselet al. [25]. Let us devote some attention to the pre- to’ denote the probability that at least one transition occurs

scription given by these authors to evaluate the two-poinP&Ween timeg andt. Itis convenient to use the conditional
correlation functiond ((t,~t,]) [25]: probability concept and the Bayesian notati@ee, for in-

stance[26]). We denote the joint probability of evendsand
” e B by p(A,B) and the conditional probability of occurrence of
ft . [7= (2=t Jind7 eventA given event8 with p(A|B). Thus, we have
271
Dty —ty) = © ' (13) p(A,B)
d (AB) = ———. (16)
fo m(7)d7 P(A| o(B)

where we assumé>t;. This equation for the correlation \We denote the conditional probability that evektoccurs,
function implies that, with a window of sizg—t;, we move given that evenB does not, byp(A|B). Using the prescrip-

A(u) — M (12)

where the Laplace transform of a functiéft) is denoted by

f(u). However, in the time asymptotic limife,,{7) has the
same inverse power-law form as dogér), that being Eqg.
(10), with the same power-law index. In the special case of
blinking quantum dots the experimental waiting time distri-
bution is found to be an inverse power law with index 2.
Here we consider the complementary case 2, so as to
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tion of Eq.(16), the latter conditional probabilitp(A|§) is
expressed as follows:

p(A) - p(A,B)
1-pB)

where we have used the relatipfd) =p(A,B)+p(A,B) for
the numerator.

The probability that timeg; and t; belong to the same
laminar regionT; ; and that, simultaneously, timésand tg
belong to the same laminar regidps, regardless of whether
T;j coincides withT, s or not, is a joint probability expressed
by the symbolp(ij,rs). Thus the four-time correlation func-
tion can be formally expressed as follows:

P(AB) = 17)

FIG. 1. The relative erroi of Eq. (22) as a function ofr,
=t,—t; and »=t3—t,. The contour plot on they, 7, plane indi-

<§(t1)§(t2)2§(2t3) &) =p(12,39. cates sets of points of this plane with the samealue. Note that

(&) the A intensity becomes larger and larger moving towards the center

On the other hand, using the notation introduced earlier®" (e contour plot that identifies the maximum &f
we have two contributions to the four-time correlation func-
tion. The first contribution is determined by all four times eration on all the possible trajectories and, consequently, a
being in the same laminar region with no random event ocpossible violation of the conditio20), a breakdown that
curring betweert; andt, (condition 1), whereas the second Mmight become significant especially in the non-Poisson case
contribution corresponds to the probability that at least onéere under study. For this reason it is convenient to numeri-
random event occurs betweenandts, given the condition cally evaluate the error produced by this approximation in a
that no random event occur betwegrandt, and none be- Pphysical situation corresponding to a strong deviation from
tweent, andt, (condition 2. This yields the following ex- Poisson statistics. In Fig. 1, we show the result of the nu-
pression: merical analysis done for the cage=2.5 and(7)=2.0. The
three-dimensional surface shows the numerical relative error
(RE) (A) of Eq. (21)—namely,

,PD+ p(1223)p(3423)p(23) - p(12,34

(18)

P(12,34 = p(14) + p(3412,23p(1223)p(23).  (19)

Here p(34] 12,2_3 is the probability that; andt, belong to
A=

the same laminar region, given that also the tigeandt;

do, while the timeg, andt; do not. The symbolp(12|23)
denote the probability that the timésandt, belong to the
same laminar region, given the fact that the timjeandt; do

not. Finally, the symbop(23) denotes the probability that the

— s (22)
p(14) + p(1223)p(34/23)p(23) + p(12,34

The results are very encouraging: the error is always very
small, and even vanishingly small, for both=t,—-t; and
m,=t3—t,, at either small or large values of these two times.

timest, andt, do not belong to the same laminar region— At intermediate values ofy and m,, we find that the RE
namely, the probability than one or more events occur bet€aches the maximum value of 1.25%. Notice that we kept
tweent, and t;. This formula is exact, but it is not fully fixed the parameter;=t,—t;, and we assigned to it the
adequate for the purpose of our discussion, given the factalue 73=1.0. ) ) o

that it is difficult to turn it into an analytical expression, in 10 transform the equality, E¢21), into a relation involv-

terms of the correlation functio®(t). Thus we make the ing correlation functions, we use E@L8) for the four-time
following approximation: correlation function. The two-time correlation functions

emerge from the second term on the right-hand side of Eq.

p(34 12,23 ~ p(34{2_3). (20) (21) via the proper use of Eqél4), (17), and(15). Thus, we
btai
We use the conditio20), thereby replacing Eq19) with optain
— R (&(ty) &) &(ta) £(ts))
p(12,34 = p(14) + p(12]23)p(34/23)p(23). (21) (22
The contribution due to condition 2 is given by the second =Dty - t;)
term on the right-hand side of E¢R1), which, although not ¢
exact, is sufficiently accurate for the purpose of this paper. . [Pty —ty) — Pty —ty) [ Pelty —t3) — Pt — )]

The physical motivation for this approximation is that
once one or more events occurred betwéemand t; any (23)
memory of the fact that the timeg andt, were in the same
laminar region is lost. This property is exact at the level ofEquation(23) is an analytic, although approximate, expres-
the single trajectories, whose time evolution after the occursion for the four-time correlation function. We stress that the
rence of an event is independent of the earlier time evolutiongeneral form of Eq(23) is not factorable and is therefore
However, the probability concept implies a statistical consid-distinct from DF. We checked numerically that the difference

1-Dt3—tp)

046118-4



NON-POISSON DICHOTOMOUS NOISE: HIGHER- PHYSICAL REVIEW E 70, 046118(2004)

between the DF and the exact four-times correlation functiomoment. Similarly, foru>3, we would obtain(x?"(t)) «t",
is at least ten times larger than the approximation involved iragain with one factor for each order of the moment. Equation
Eq. (23). (27) is a consequence of non-Poisson statistics. No matter
Note that in the Poisson case, the waiting time distributiorhow large « is, the diffusion process departs from the
(1) is exponential. Using the prescription given by ELg) monoscaling condition, even if the departure is perceived
it is not difficult to show that the correlation function 6fis  through moments of increasing order with increasiag
also exponential. Then, after tedious but straightforward alConsequently, the DF implies the existence of the scating
gebra, we establish that E3) reduces to «t% with the scaling index given by

(f(t)&(t) £(ta) &(ty)) = () Et) N Et) E(L0)),  (24)

which coincides with Eq(4); that is, the process becomes
compatible with the DF. Given that the DF holds true for thewhere,u—l is the Lévy index. This latter result agrees with

four-time correlation function, it is possible to extend the DF o scaling predicted by the GDE, as established in |R6}.
property to the R-time correlation function using induction. o the other hand, the asymptotic resy2§) and (27) es-
Thus, we conclude that the four-time correlation conditionipjish that the breakdown of the DF condition yields the
(23), for waiting times that have non-Poisson statistics, vio-preakdown of the monoscaling condition determined by the
lates the DF underlying Eq8). This violation of the factor-  pr condition. Here the central fact to keep in mind is that
ization property seems to be a satisfactory explanation as tgq_ (7) generates Lévy walks, rather than Lévy flights. A
why the GDE[20] does not yield the proper Lévy diffusion | gy flight is a kind of random walk in which the step
in the asympotic limit. On the other hand, using the results Oiengths have an inverse power-law distribution, so the sec-
this section we recover the results of the numerical calculagng moment of the dynamical variable diverges. The Lévy
tions and theoretical prediction of the fourth moments obyyik on the other hand, ties the length of a step to the time
tained by Allegriniet al. [27] and, independently, by other oy ired to take the step, resulting in a finite second moment
groups|[28]. To establish this latter point we integrate 6. for the dynamical variable. Furthermore, it takes an infinite
with the initial conditionx(0) for all the trajectories. Further- ime for a Lévy walk to yield the same scaling as a corre-
more, we evaluate the fourth powerxit) and average over sponding Lévy flight, the latter scaling index being given by
all the trajectories of the Gibbs ensemble. By using the sta-
tionary condition, which makes this correlation function de- S=
pend only on the time differences, rather than on the absolute w—1
time, we obtain

4-pun 1
5:Tfor2s,u,s3, 6:§for,u>3, (28)

1
for2<s u<3, 5:§f0r,u>3. (29

For this reason, the Lévy walk, introduced by Shlesingfer
t ta '3 t2 al. [29], can be considered to be a manifestation of the living
4 — 1
) = BL dt4fo dtSjo dthO dty(£(t) €t €ty (L)) state of matte(LSM) [30], in the sense described in some
recent work[31,32. The LSM is interpreted as the existence
(25 of a scaling condition intermediate between that of dynamics

Introducing the newly obtained expression for the fourth-2nd thermodynamics and which can last forever.
order correlation, Eq.(23), into Eqg. (25), in the time

asymptotic limit the leading contribution to the fourth mo- . AGING
ment is given by the first term on the right-hand side of Eq. . . _
(23). Therefore we replace the integrand in E85) with In this section we adopt the Bayesan formalism to evalu-

®4(t,~t;), and using the inverse power-law form of the cor- ate the correlation functions in a nonstationary condition.
relation function, we carry out the four-time integrations andThis enables us to establish that the breakdown of the DF

obtain(x4(t)) = t5~~, By extending this way of proceeding to condition is closely related to aging.

the calculation of the 2times correlation function, we de- ~ Before proceeding with the formalism, we briefly review
rive the general result why non-Poisson statistics produces aging, as discussed in
detail in Refs.[30,33. Suppose that we create an infinite
(PN(t))y = 2R for 2 < < 3, (26)  sequence of time intervals of length—namely, the theoret-

ical sequence discussed earlier. As earlier mentioned, we cre-
ate the observable sequence by filling the time intervals,
called laminar regions, with eith&/ or -W, according to the

in agreement with the numerical results of Rg7], while,
for higher values ofu, we have

OE(1)) o< t for > 3, (27)  coin tossing prescription, with the first laminar region begin-
ning at timet=ty. Let us imagine, to facilitate the discussion
wherev=max2n-u+2,n). of this section, that the theoretical sequence is observable,

The asymptotic result€®26) and(27) establish that ther®2  even if in practice it is not. If we begin the observation
moments do not have the scaling corresponding to the Diprocess at the same time when the theoretical sequence is
condition. If we assume that the condition of Ed) applies, generated, the result of our observation yields the waiting
in keeping with the nature of the GDE, instead of E26)  time distribution of Eq(10). If the observation of the theo-
we would obtain, for 2 =<3, (x?"(t))«t"®#), with one  retical sequence begins at a given titae-to, the distribu-
factor, which depends op, occurring for each order of the tion of the waiting times before the first exit from the laminar
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region, denoted by (), will not coincide withy(t). This  to the probability that bottA andB occur. Finally, the prob-
is a consequence of the first laminar region observed havingbility that t; andt, belong to the same laminar region is
begun at any time betweey and t,. Thus, the resulting equivalent to the probability that the properB applies,
waiting time will be, in general, shorter than the real sojournthereby allowing us to write

time generated by 7). In the Poisson case this shortening of

the time does not have any effect on the shapesof (1), Pylty ~to) = p(B). (33

which remains identical tg/(7). In the non-Poisson case, on ay this stage, it is straigthforward to realize the goal of ex-
the contrary, delaying the process of observation does 'nﬂlbressingA(‘O)(tz—tl) in terms of the aged corelation function
ence the shape af;, (1), causing it to depart from the form g, (1), we plug Eqs(31)«33) into the right-hand side of Eq.
of y{(7) [30,33. (17), thereby expressing the right-hand side of E2D) in

Let us now address the problem of building up the correterms of the aged correlation functidny(t). The final result
sponding aging correlation function @&t). We study the |eads

correlation betweerd(t,) and £&(t;), with the condition that
t,>1,>1y, tp being the time at which the laminar region (to) Dty - ty) — Dty - tp)
begins. We solve this problem in two steps. In the first step ATt~y = 1-D(t, - ty) : (34)
we define the correlation functioA®(t,—t;), without re- a1
quiring that the laminar region begins t@&atty, but that it in It is easy to show that in the Poisson case B¢) reduces to
fact begins at a time intermediate betwegrand ty. This
corresponds to stating that'?(t,—t,) is a correlation func- A (t,~ ;) =Dt~ ty), (35)
tion of l_Jndefmec_i ageyounger though, than theétl—to)—ok_j_ ipdependently of,.
correlation function. In the second step we set the additional Now let us take the second step and explicitly evaluate
condition that the laminar regions begintatt,, and we give (to) . _ _Step and expiicitly

P, (t,—t1). This aging correlation function is the sum of

the prescription to determine the correlation functqb?P), a - . TR .
notation denoting in fact thét; —ty)-old correlation function. two probabilities. The first contribution is the probablllty that
) . L . ... N0 event occurs betwedp andt,, thereby ensuring thag
The latter aging correlation function fits the earlier definition : )
andt, belong to the same laminar region. The second con-

of '/’tr‘o(t)' The ‘corresponding analytical expression wil tribution corresponds to the probability that an arbitrary

make it possible to establish the effect_ of aging on thenumber of events occurred betwegrandt;. Note that the
phenomenon—namely, the effect of moving bshandt, laminar region beginning dt=ty implies that at this time a

away fromto as well as the more traditional effect of increas- random event occurs, which is, in fact, the beginning of the
mgNth:a ?;}St?rt]ﬁe Tbetwedg andltlt: function is ai b laminar region. As stated a number of times earlier, at the

ote that the former correlation function Is given by beginning of any laminar region, we toss a coin to decide the
sign of the laminar region. This is the random event that

(to) (.. — = R)
Atz ~ty) = p(A/B). (30) makes it possible for us to expre@ét")(tz—tl) as follows:
We defineA as the condition that bothh andt, belong to the 0
same laminar region. The symbBl denotes the condition DOty — ) =Wty —to) +[1 = W(ty —to)]
that t; and t; belong to the same laminar region. Conse- ey _
quently, the right-hand term of E¢B0) denotes the probabil- Pelly ) = Pl = o) (36)
ity thatt; andt, belong to the same laminar region, given the 1-®lty —to)

fact thatt, does not belongo the same laminar region &s
which is in fact the earlier-defined correlation function
youngerthan the(t; —ty)-old correlation function, given the
fact we did not set the condition that the laminar regions o
begin att=t,. \P(t)zf dt’ y(t'), (37)
This aging correlation function can be expressed in terms t
of the equilibrium correlation functiom,(t), using the gen-
eral prescription of Eq(17). Let us see in detail how to do
that. The aged correlation function is the probability that
and t, belong to the same laminar region and thus is th
probabilty that propertyA occurs, with no other condition.
Consequently, we write

In Eqg. (36) we have used the conventional notation of the
" CTRW formalism[34],

where(t) is the waiting time distribution of Eq10). Mon-
troll and Weiss[34] make the implicit assumption that the
éaminar region begins at=0. Thus,¥(t) is the probability
that no event occurs up to tinte after the random event
occurs at timé=0. Here we replace the initiation time 0
with t=ty. Thus,W(t,~tp) is the probability that no random
Dty —ty) = p(A). (31 event occurs betwedy andt,, as required. The second term
in Eq. (36) is the product of the probability that one or more
events occurred betwe¢pandt,, given the fact that, and
Dy(t,~to) = p(A,B). (32) t; are in the same Iaminar region agds not. _

We note that Eq(36) interrelates factorability and aging
In fact, thanks to the time orderinig>t; >t,, the probability = and consequently is the most relevant expression for our dis-
thatt, andt, belong to the same laminar region is equivalentcussion. The importance of this result can be made transpar-

By the same token, we write
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ent by going back to the discussion in Sec. Il. Equati®f)  dictions on an ensemble of distinct trajectories.
allows us to express the fourth-order correlation function of The exact expression for the aging correlation function
Eq. (23) under the following form: can be found in the important and rigorous work of R88].

On the basis of earlier work on aging induced by non-
(f(t) E(t) €ty (L)) = Dylty—ty) + [ Dty — ty) — Dyt~ ty)] Poisson statistic§36] we expect that our result coincides

(&) with the exact formulgsee Eq.(9.1) of Ref. [35]] at both
XAR(t, — t). (38) small and Iarge values ap. A significapt discrepancy is
expected for intermediate values, a price to pay to get an
As pointed earlier, in the Poisson cgdsee Eq(35)], analytical result that, although not exact, yields the signifi-
O gy — B cant benefit of clarifying the connection between aging and
AR (s~ tg) = Pty —3), (39 the DF breakdown.

independently of,. By inserting Eq.(39) into Eqg.(38) and
noting that®(t,—t;) =®(t,—t5) Dt3—t;), we see immedi-
ately that the DF condition is recovered:

(&t &) E(tg) E(ty))
(&)?

IV. CONCLUDING REMARK

The equivalence between the trajectory and density pic-

— tures of physical phenomena is one of the major tenets of
=Pt —t)) Pty —tg). 40 . . -

o) Pt~ 1) (40 modern physics. It therefore came as quite a suprise when

. ologna et al. [20] discovered an inconsistency between
Thus_, we have _establls_hed that the breakdowrj .Of _the N hese two pictures in the case of nonordinary statistical me-
condition and aging are interrelated. In fact, annihilating the

. " chanics. The form of the inconsistency had to do with the
aging property has the effect of reestablishing the DF P'OPgerivation of anomalous diffusion of the Lévy kind, using
erty. y

It th st ing that Eq36 ¢ th dichotomous noise and either CTRW or the generalized cen-
IS worth stressing tha q .) rests on e Same ap- 5| jimit theorem. Both of these approaches use trajectories
proximation as that used to derive E@3—namely, Eq.

200 T ke this fact ¢ + let us defi f and not the Liouville-like approach for densities, such as
'Eh )- To 31ta N ITI Z:C m?[Le ransparent, ? us delne a u:'does the GDE. It is a simple matter, using KE8), to show

er condition, calledL, as the occurrence of a random eventy,; \he Gpg yields a hierarchy of momenri#€"(t)) with n
atty. This defines a set of vanishing measures, compared to

conditionsA andB. However, it makes sense to set this con-;,[le’d2 b ) "f\ﬁ/f;'tigt?g:g('geza?é?ﬁ]y W[')tlr:] t:‘.ﬁig'?;i:gnza%g:]er'
dition as a further constraint for the proper definition of con- y g br. ’

o o Lo _ obtained using the density, contradicts the hierarchy gener-
csj;gﬁnal probability. Thus, we write first the formal expres ated using the trajectories in Sec. Ill. We have limited the
analysis to the fourth-order correlation functions; however,
p(AIC) = p(A,B|C) + P(A,B[C), (41)  this order is sufficient to identify the source of the inconsis-
tency between the trajectory and density pictures as being
which is exact. Using the concept of conditional probability, due to the non-Poisson character of the statistics.

we turn this exact expression into We have also shown that a departure from Poisson statis-
— — tics has the effect of introducing a memory into the correla-
p(AIC) = p(A,B|C) + P(B|C)P(AB,C), (42 tion functions that can last for an infinitely long time. For
which is still exact. Let us make the approximation dichotomous noise the two-time correlation function, using
either trajectories or densities, is the same; however, higher-
p(A|E,C) ~ p(A|§). (43) order correlations are not the same for non-Poisson statistics.

) ) ) ) The deviation from Poisson statistics is manifest in a depen-
This has the effect of turning E¢43) into the approximated gence of correlations on the difference between the initiation
expression time and the observation time—that is, on the age of the

— — system. Age destroys the DF property and may represent a
P(AIC) = p(A,B|C) + p(BIC)p(AB). (44 state of matter intermediate between the dynamic and ther-
modynamic condition, mentioned earlier, the living state of
matter. This eternal state of nonequilibrium, in which a per-
turbed phenomena relaxes to, but never attains, equilbrium,
p(E|C) =1-p(B|C). (45) shou_ld be contrasted with the Onsager principle in whic_h
physical systems are assumed to be aged. An aged physical
We identify W(t,~ty) with p(A,B|C) and W(t;~ty) with  system is one that has reached equilibrium with a heat bath
p(B|C), given the fact that the last random event occurs atong before measurements are taken.
t=ty and no further random event occurs afterward. Thus, we It is evident that to establish a density picture equivalent
prove that that Eq44) generates Eq36) and, consequently, to the trajectory picture, in which the time averages and en-
that this expression for the aging correlation function rests oisemble averages are the same, in the non-Poisson as well as
the same approximation, E€R0), as that yielding the major in the Poisson case, we have to overcome the limitations of
result of this paper—namely, E¢23): Equations(43) and  the Liouville-like approaches of Refgl7-19. This difficult
(20) share the property of being exact, if referred to a singleéssue calls for further research. Nevertheless, the merit of the
trajectory, and become approximate when used to make pr@resent paper lies in the fact that it has revealed the violation

As to p(A|B), we have already expressed it A%)(t,~t,).
We also note that
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of the DF property when the statistics of the underlying pro-the non-Poisson case, this expression violates the DF condi-
cess are non-Poisson. DF is a factorization property assumeidn. We have also established a close connection between
for dichotomous noise by researchers in multiple fields, oftenhe DF breakdown and aging. The conditier< 2 is incom-
without the realization that such factorization is tied to thepatible with the existence of equilibriurf6,30), thereby
statistics of the process. making aging become a natural property. However, aging is
It is worth remarking that Eq(8), the general diffusion possible also in the case whexe> 2, in spite of the fact that
equation, can also be derived by assuming that the randoig thjs case thermodynamic equilibrium is possif86]. This
sequence(t) is built up by time-modulating a generating pecomes evident jf. < 3: We see, in fact, from Eq13) that
Poisson distribution/(\(t) ) =ex-A(t)t] as shown in de- i, this case the correlation functishy(t) is an inverse power
tail by Bolognaet al. [37]. The resulting sequence, however, |5,y with index.—2. Thus, it takes an infinitely long time for

is not a renewal sequence, such as found in the CTRW forg, ) nden rrelation function m
malism. We need to understand why abandoning the Poissc}ﬂgﬂﬁggrgepe dent correfation function £86) to become

assumption and adopting a Liouville-like approach leads to We do not make any claim for generality. The key predic-

physi.cal effepts that are inconsistent W.ith renewal ProCESSEHy of Eq.(23) is not exact and its validity has been checked
This is a difficult problem whose solution also requires ad'numerically only in the region Z < 3. Nevertheless, this

ditional research. It is important to point out, to avoid anyregion is that discussed by Zaslavs40] as a prototype of

|to035|bletconfu3|on, thatthh? ngEs'S \:(wdely . dtescr'b%nomalous statistical mechanics generated by chaotic dy-
ransport processesee Refs{38,39, for some recent pa- namics. This makes our conclusion of some interest, even if

per%.. Howe\éer, thﬁse papFrg ref;ar to .SUbd]!ﬁlrjls'?ln’ a physma]-I[ does not rest on an exact analytical formula of general
condition where the correlation function of the fluctuatibn validity. In this sense, this is a remarkable result, which chal-

cannot be defined, not even in the nonstationary sense ¢ nges the traditional treatments of such stochastic dynamical

Sec. lll. The discussion herein focgses on superdiffision anfl - asses based on the generalized master eqUEME).
addresses the problem of computing high-order correlation he analysis of the GME based on these results will be taken

for renewal process with nonexponential waiting time distri-
butions. The solution to this problem is given by Eg3); up elsewhere.
however, this crucial property has not yet been obtained us-
ing Liouville-like methods[17-19.

In conclusion, by means of the conditional probability
formalism, we have found an analytical approximation to the P.G. thankfully aknowledges the Army Research Office
fourth-order correlation function, and we have shown that irfor financial support through Grant No. DAAD19-02-1-0037
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